The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  X X^2  X X^2
 0 X^2+2  0 X^2  0  0 X^2 X^2+2  0  0 X^2 X^2+2  0  0 X^2 X^2+2  2  2 X^2+2 X^2  2  2 X^2+2 X^2  2  2 X^2+2 X^2  2  2 X^2+2 X^2  2  0 X^2+2 X^2 X^2 X^2 X^2+2 X^2  2  0 X^2 X^2  0  0  2  2 X^2+2 X^2+2 X^2+2 X^2  2  0 X^2+2 X^2+2  2  0 X^2+2 X^2  0  0  2  2  0  2 X^2 X^2+2  0  0 X^2+2 X^2+2 X^2 X^2 X^2+2 X^2+2
 0  0 X^2+2 X^2  0 X^2+2 X^2  0  2 X^2 X^2+2  2  2 X^2 X^2+2  2  2 X^2 X^2+2  2  2 X^2 X^2+2  2  0 X^2+2 X^2  0  0 X^2+2 X^2  0 X^2 X^2+2  0  2 X^2 X^2+2  0  2 X^2 X^2+2 X^2 X^2+2  0  2  2  0 X^2+2 X^2  2  0 X^2+2 X^2 X^2+2 X^2 X^2+2 X^2  2  0  0  2  2  0  0 X^2 X^2  0  0 X^2+2 X^2+2  2 X^2+2 X^2+2  0  2
 0  0  0  2  2  2  0  2  2  2  2  2  0  0  0  0  0  0  0  0  2  2  2  2  2  2  2  2  0  0  0  0  0  0  0  0  2  2  2  2  2  2  0  0  2  2  2  2  0  0  2  2  0  0  2  2  2  2  0  0  0  0  0  0  0  0  0  2  2  0  0  0  0  2  2  2

generates a code of length 76 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 74.

Homogenous weight enumerator: w(x)=1x^0+102x^74+64x^75+186x^76+64x^77+84x^78+3x^80+6x^82+2x^108

The gray image is a code over GF(2) with n=608, k=9 and d=296.
This code was found by Heurico 1.16 in 0.64 seconds.